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Abstract

We describe two simple rules of cutting-plane generation for the

coniplementarity constraints

Ax~~’b

x > O

~~~
17 I x 0(ClIP) I

h=1 KCJ
h ~keK

and we show that these rules generate all (and only) the valid cutting-

planes for (ClIP) , if there is some b’ for which C x > 0 Ax > b’ 3
is non-empty and bounded .

In (C lI P), x = ( X1, .. .  ,X ), and is a set of subsets

K of 
~ 
1,... ,r 3. The problem (CMP) includes the linear complementarity

problem and biva lent integer progranuning, along with many other constraint

sets which impose logical restrictions on linear inequalities.

~~ Words: . •‘
~~~

~~~~~ 0
1. Cutting-planes

2. Complementarity

3. integer progranming

4. DisJunctive methods
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CUTTING-PLANES FOR

COMPLEMENTARITY CONSTRAINTS

I)y R . C .  .Jc ros low

We provide a characterization of the set of all valid

inequalities for a constraint system (CMP) (see page 39 below)

which includes , as special cases , the linear complementarity

problem and the constraints of the bivalent integer program, as

well as many other constraint sets which impose logical restrictions

on linear inequalities. The characterization is derived in terms of

“co-propositions” [16], [18], [19] (see Theorem 8 below). Then this

characterization is put in an alternate form by means of rules for

cutting-plane generation which are of a particularly simple form,

yet which are shown to generate precisely the set of valid inequalities

for (CMP) when iteratively applied (see Theorem 9 below).

Our main result (Theorem 8) generalizes both a result of Balas

[2] and one of Blair [4]. We employ the techniques of the disjunctive

approach of cutting-plane theory (see e.g. [1], [6], [12], [13] , [16] ,

[ 24] , [ 30] , [3l] ;or  [ 19] for a survey of this topic) ; for other

applications of disjunctive methods to complementarity problems see

(1], [13], [24]. These methods combine the theory of linear inequalities

H with concepts and some elementary results from mathematical logic.

When material from logic is needed , it is developed below so that the

paper is self-contained. We shall use [27] and [29] as general

references for linear inequalities and polyhedra.

- - S -- -~~-- — —-— ,- -.---~~~~- — ----.~~- 



_
~~Th.—~~

S.- 
~~~ 

-- -. _______________________________

2.

Section 1. Motivation and Some Basic Results

In what follows, x = ( x1,... ,x ) denotes a vector in R~ , and

the letters A ,B,C,.. .etc. denote matrices while b,d,. . .etc. denote

vectors in some finite-dimensional real space. The writing of a

matrix inequality such as Ax b entails the compatibility of A ,xb:

i.e., for some integer m, A is m by r and b is m by 1.

We reserve script 1etters6~Q,~St,... from the last half of the
alphabet to denote atomic propositions, which for our purposes will

always have the form
r

(1) E a . x . > a
j=l ~ ~~ 0

of a single linear inequality. Script letters~~~4e~. . .etc . from the

first half of the alphabe t are used to denote both atomic propositions

(1) and also more complex propositions , which arise by repeatedly

placing “v” (for ‘or ’) or “A” (for :‘and’) between propositions already

constructed. The “v” used here is in the inclusive sense:,3~~C is true

if either one of them is true, or if both are true.

We say that Dx ~> d is facial for Ax > b when C X~ DX > d, Ax b 3 is a

face of C x~Ax ~ — b). Concerning results o polyhedra and faces, facets,

etc. for polyhedra, the reader may wish to consult [27] or [29]. The

term “facial” is due to Balas [ 2 ], originally to treat the instance

that Dx > d has only one constraint.

A~iin following [2 1, we shall say that the constraint system

(2) A x > b

L
I

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~- - ~~“-,.--.S~~.- A
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3.

(3) for each h = 1,... ,t at least one of the conditions

or .... or A
h,t

~~~~> bh,t~~~

holds;

is facial, if for all h = l,...t and p l,...,t(h) the constraint

system Ah ,Px > bh~
p is facial to Ax > b.

To expla in the resul t that we shall strengthen in this paper ,

def ine inductively the convex polyhedra

(4) K = ( x I A x > b )

I t(h+l) 1 h+l ,p h+l,p.~(5) K~~1 = clconv ( U ~ K.0 fl {xtA x? b 5) 1~ 
0 ~ h < t 1.

)

In what follows, cony S resp. clconv S denotes the smallest

convex resp closed convex set containing S.

Theorem : (Balas [2 1)
If Cx~Ax > b3 is bounded and (2), (3) is facial,

then
• 

(6) Kt = clconv C xl (2) and (3) hold 3
Remark: Half of Theorem 1 is straightforward , for it is easy to

prov e K
~ ~ 

clconv C xl (2) and (3) hold 3, wi thou t the boundedne ss or

faciality assumptions.

To see that the reverse inclusion has non-trivial content,

consider the following constraint system which is an alternate format

for the constraints of an integer program: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(2)’ —2x1 + 2x2 = 1

O~ c x  < 1
— 1—

(3)’ at least one of the conditions

H x1 = 0 orx
1

I
holds, and at least one of the conditions

x2 = 0 or x2 
= 1 or x2 = 2

1k 1 holds.

One easily shows that the constraint system has no solutions, since

x2 = + x1 and 0 < x1 < 1 forces x
2 

= 1 in any solution, which in

turn forc es x1 I - = .~~
. and hence is impossible.

The constraint x
2 

= 1 is not facial, al though all the other

constraints (i.e., x1 
= 0, x1 1, x2 

= 0 , x2 = 1) are fac ial ,

some giving the empty face.

We have K0 = {(x 1,x2 ) I  -2x 1 + 2x
2 

= 1, 0 < x1 <

K1 = K
0
, K2 

= K1 fl ~L
(xl ,x2) l  x2 = 1] -~

( ~, 1 ) }. ~ . 
-

- 

- 

Since K2 ~ 0 , equation (6) fails.

Even If (2) , (3) is facial , equation (6) can fai l  if the

boundedness assumption fails; see remarks after  Theorem 8 in this

regard .
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5.
In [ 16] we introduced the co-propositions and further  developed

them in [18]. Our notation is from [18], [19].

The co-proposition construction is an assignment, which makes

correspond, to a proposition(~ whose atomic ietters tY,9,1~ ,...,

are linear inequalities (1), a polyhedral cone CT((L~) of cuts that

are all valid for the set C xla(x) is true 3, hence al so for

clconv C xlU(x) is true 3. Here , we have used the notation

~2 = Ct(~) to emphasize the dependence of the proposition 6~-upon
r

xcR • The construction generalizes Balas’ disjunctive constraints

[1 1, and we describe it next.

If ~~~ i given by (1), put

(7) CT((3) = cone ~ (a0, ~
ai,...,_ar), ( -l ,O , . . . ,O ),

(O ,— l ,0, . .., O ) , . . . ,  (0 ,.. . ,O ,—l )

where cone S denotes the smallest convex cone containing the set S.

(Unit vectors (O,-1,O,...,0),...,(O,...,O,-l) occur in (7) due to an

implicit condition x > 0 on the variables x in (1)). Then inductively

set

(8) cT(ÔA V) = CT (A5) + CTC.4~)

(9) CT(~3v ,~tI) = CT (,~ ) fl CT (M

to determine CT(.L ) for any proposition ~L In (8), for convex

sets K,L set K + L = C k +~~~ kcK ,.E.eL 3 . In 116] we showed that

CT (C L)  is always a polyhedral cone.

Associated with CT(&) is the relaxation cp(Ct) that it determines:

5-

~ 

•
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for every (rr , -rr ,... ,-ir ) eCT(C ~) ,
(10) cp(CL-) = x > 0 r o 1 r

E 1r . x . >1T

j=i ] 3 —  0

As noted in [18, Sec. 2.1] or in [19, Theorem in Sec. 2.1],

when each proposition #8’
h~ 

1 < h < ~~~, is the conjunction of the

inequalities in the matrix inequality Ahx > b
h
, then

CT(,fr
1
v...vP) consists of all the disjunctive constraints cuts

[1 ] for the logical condition, that at least one system among

A
hx > b

h
, x > 0 holds as h varies over h = l ,...,s. However , CT4~2—)

is defined for a1l~2.. built up from atomic propositions (1) via the

connec tives “v” and “A ,” whether or not they have the special logical

form for disjunctive cuts.

In seeking a generalization of Theorem 1, we note that Theorem 1

refers to actual geometric bodies Kh, 0 < h ~c t, while Co-propositions

are defined from logical descriptions a.of these bodies, which are

syntactic objects and not geometric in nature. Now suppose we can

find a suitable syntactic description a-0f K
~
, for which we can. prove

(6)’ CT(~L) contains precisely the valid inequalities

for clconv C x~ (2) and (3) hold 3.
Then since K

~ ~ 
clconv C x l (2) and (3) hold 3 is obvious from (4), (5),

we will have strengthened (6) of Theorem 1, in view of the fact that

CT(cL) contains only valid cuts for K
~
. In fact, we would also have

obtained, as a consequence of (6)’, that for the C—chosen, CT(a. .) is

all (and not just some) of the valid cuts for Kt 
prov ided Kt ~ ~ It is

well-known that the disjunctive constraints construction [1] does not

necessarily provide all valid cuts (see e.g., [16] or just below eqn. (18)).

- - — - .--— - - ____ ___5__ • ——_ _ _ _ 5 __ _•_ _s_____ .~ ~~~~~~~~~~~~ . 5 .— - :___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . ,  , .__. -
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Even more , if we can establish (6)’ for a suitably chosen

sentence C , we will obtain a compact description of how to generate

all the valid cuts for clconv C xl (2) and (3) hold), by using the
inductive clauses (8) and (9) of the co-proposition construction.

Now it turns out, that there is actually more than one sentence (7~

for which (6)’ is true. In Theorem 8, we exhibit one of these

sentences, for which the description of all valid cuts via (7), (8),

(9) has a particularly surprising form that we will exhibit in Theorem 9.

In our selection of a sentence (L- possessing the property (6)’,

we have been guided by a striking discovery of C.E. Blair [ 4

Chapter 3], in the form of an unusual inductive characterization of

the valid cutting planes of a bivalent integer program.

We now summarize some results that we will use later. In what

follows, S~ denotes the polar of the set S (see e.g., [27], 
[29]).

Theorem 2:

1) [ 16, Theorem 25]

(11) cp(~L.) ~ clconv C x > 0 (L- (x) is true 3
• 2) [ 16, Theorem 22]

(12) cp (~âv .‘~~) ~ clconv ( cp (~6) U cp(,&)) P
with = in place of ~ if both

k cp(,~~) ~ 0 and cp(~~) ,~ 0

!

~

___ _ . _

~ 

. _ • _ ~~~~~~-- _ —--- 
_ 

_ S _ S _ S S
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3) 1 16, Theorem 22]

If cp(~K3) = cp(4~) = 0 ,

(13) cp(~~ vM’) = 0

4) [ 16, Theorem 221

(14) cp (~ 3 A ,V& ) = cp(~~) fl cp(,~)

5) [ 16, Theorem 24]

(15) cp(C- A (/3 v 1)) ~ cp((~LA~~) v ( CLL ~ 1)

6) [ 18 , Section 2.1.2, Part 21 or [ 19, Theorem of Section 2.1.2]
If cp(~~) fl cp(,~~1v. . .v ,1~) is a face of c~ C49jv. . .vk ) and if

Cp (~~~
’
1v ..  .v~9’5) is a polytype , then

(16) cp(dA (,~ v. . .v4 )) = cp ( (A5t~ 2~j)v. . .
= clconv ‘. U (cp(~~) f l  cp

7) If €Z.is the conjunction of the inequalities in the matrix system

of inequalities Ax > b , then

(17) cp ( ij ) C x > O I A x > b  3
Proof of 7: From 1 18, Part 2, eqn., (2.1.11), p. 84], or from

19 , Lemma in Sec. 2.1], we see that 7) holds if Ax > b contains

only the single inequality (1). For the general case several

applications of Theorem 2(4) above gives (17).

~ Q.E.D.

Theorem 2(6) is our generalization of a basic lemma [ 2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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:j Lemma 5.1] used by Balas to prove Theorem I. In our generalization

Theorem 8 of Theorem 1, we shall need the pr inciple of Theorem 2(6).

Whe n the equation
H , t

• (18) cp(~~ 1v. . . v f r )  = clconv ~J cp(
~~
’
h) )S h=l

holds, we say that the disjunction 1éY1v. . .v is exact. In [ 16,
p.66] we noted that exactness fails if s = 2, ~~ is -x1 > 

- 1 and

• 
is 0~x1 

> 1, although by Theorem 2(2) one of the two inclusions

implicit in the equality of (18) always holds.

To develop our generalization (6)’ of Theorem 1, we shall need

to know more about the relationship of cp (A~1v.. .v4~) to clcoav

\ ~~~~~~~~~~~~~~~~~ and in specific , to know more about exactness (18)

than given in 18]. This additional information will be given in

Theorem 5, which also is a new result of some independent interest .

To state Theorem 5 in a concise form, we shall define the recession

cone of a sentence CL.., which is

(19) rec(Q..) = C v~ (0,v) e CT(~2.-)
1’ 3

The recession cone rec(a..) has an alternate definition, which is

independent of CT(CL.) and the co-proposition construction, and which

allows the determination of ree(a,) in a simple, inductive manner,

as our next result reveals.

First , we recall two basic polarity laws for polyhedral cones

C1, C2 :

j
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(20) (C
1 + C 2 )~ = C1~ fl

(21) (C1 f l  C2)~ = C1~ + C 2~

See e.g. [27]~ [29].

Lemma ~:

1) rec (1ÔAM = rec (J5 ) fl rec (,O)

2) rec (4v,~4~) = rec (4) + rec (49)

• 3) If (Lis Ax ~
> b , then

(22) rec (~~) = Cx > OjAx ~ 01
• Proof :

1) From (8), (20) we have

(23) CT(A A~~)~ = CT(56)~ fl CT(~~ )1’

The Lemma 3(1) follows from (19), (23).

2) From (9) , (21) we have

(24) CT(óv .~ )~ 
= CT(,ô)” + CT(2~)~

• Next , note that for any proposition IZ
(25) (v ,v) c CT(cZ)~ implies V > 0

• S Indeed , CT(C-) ,~ 0 , and if ( rT , -iT) € CT(a) we have

(26) ,rv> 1i v
~~~~0 0

by (v ,v) s CT(Q.)~ . However , holding ii fixed in (26), ~r

can be indefinitely decreased, since (-l,0,...,0) € CT(a) by

induction on the clauses (7), (8), (9).  But an indefinite devrease

~~ of (26) with 1r ,v fixed is possible only if v
0 
> 0, proving (25).

~~ *

t
-5--- -.—- 5 —- - — -5  -5 ._ S _ _ S . -— 5 -- . -5~~~5-5- 5—- ._- _ -- , .- _ ~5~~~~~~~ 5 ——
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Using (24), (25) we have from the definition (19),

(27) v s rec (‘1v4’) — (O ,v) € CT(ôvI7~~

(0,v) = (u ,u) + (w ,w)

with u > 0 , w 0

(u ,u )€ CT (6)” and (w0,w) a CT(4~~~

<—> (0,v) = (0 ,u) + (0 ,w)

with

(0,u) € CT(,~3)~ and (O,w) a CTC9-)’~
<—~ v = u + w  S

with u € rec(/j) and w € rec (s.)

for some u ,w. From (27) we have (2 )  of this lemma.

3) It suffices to prove this result when Ax > b is a single inequality

(1) and use Lemma 3(1) above to compete the proof.

However , if Gis given by (1) , from (7)

(28) (0,v) a CT (O )~ <—> for all 9, X ,X 1, .,X > 0

we have

S 

0 ~ 0 (Qa~ - X
0
) +

~~~ 
V
j
(~ Sa

j 
- X~)

<—> v. > 0 , j = l ,...,r
-~ r

and 0< .E1 a~~v~

But (28) is (22) for the case of one constraint , by the definition

(19). 5

Q.E .D.

I —

I L  — -----——-~~~~~~~~—- — — --—- -—- - - - -  — - - - — 5 - - - —-
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12.

• Our next result explains the use of the term “recession cone

0fa ,” If cp(U..) ,~ 0 , rec (Z) is the recession cone of the

polyhedron cp(j1) in the usual sense [27], [29 1 , i.e., 
~~ 

rec (~~-)
S if and only if

(29) for all xi cp(~~ ) and A — 0, we have x + A ye cp(Q~

If cp(~Z) ,~ 0 , since cp(a) is polyhedral (29) is known to be

.5 equivalent to

(29)’ x
0 + A v a cp(a) for all A > 0

where x0 € cp(a.~ is an arbitrary element of cp(Q.).

However , if cp(a) = 0, (29) holds vacuously for all v € Rr , while

rec (~~) defined by (19) usuall y d i f f e r s  from Rr . It is rec (~1)

which provides the ’~orrect” definition of a recession cone for the

results of this paper, rather than the conventional definition (29).

Leimna 4: If cp(C-) ~ 0, then v s rec ( (Z) If and only if (29)

holds.

Proof: From the definition (10),

S 

(30) x € cp(a) < >  (1,x) a CT(Q_)~

Let x° ~ cp(~Z). Then v satisfies (29) ’ if and only ~.f

(31) for all A > Owe have (1, x
0 
+ A v) a CT(U.)~

Since (1, x°)e  CT(a)~ by (30) , clearly (31) holds if v € rec (CL.) ,

for then (O,v) c CT(a.)~ and (l ,x°) + X(0 ,v) c CT(~~ )~~. For the converse ,

let (31) hold; then for A > 0 arbitraril y large , we have

(32) (1/A , v + x°IX €)CT(c2)~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•~~~
•
~~~~~~~~~~~~~~~~~~

_ -5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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since CT(~Z.)~ is a cone. Putting A 7’ + ~ in (32) ,  we obtain

(0, v) € CT(CL.)~ since the polyhedral cone CT(C.)1’ is closed.

Hence by (19) , v € rec (~Z)

Q.E.D.

Theorem 5: Suppose that

cp (49~1) i~ 0 , i = 1,...

(33)
S cp( 4~ ) = 0 , i = u I- 1,...  ,s

and that ]. u< S .

Then

(34) cp (~~j v...v49) = clconv (h~ 1 cp(A ) )  + rec ~~~~~ +... + rec (~~~)

Also, exactness (18) holds if and only if

(35) rec (sb~j .~) ~ rec (bk) +...+ rec (~~~) for h = u + 1,... ,~~ •

Proof: For all i = I , . . .  ,S the non-empty polyhedral cone CT(b~)~

has a f i nite bases , so pu t

(36) CT(~~~.)
1

• •‘ i,l\ i ,a ( i ) \  i ,l’ i ,b ( i )  ~cone L~
O,v ,~

... ,~ O ,v j ,I~l ,w , . ..,~~l ,w 
. ‘

i =  l ,...,s.

In (36) ,  we differentiate between elements of the basis for

CTCfr1)~ 
with zero or positive first co-ordinate , by (25); by

normalization, we take those with positive first cc-ordinates to have

f i r s t  co-ordinate uni ty .

_ _ _ _ _ _ _ _  S
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- By (30), (33) we have

1 (37) b(i) > 1 for i = 1,... ,u

b(i) = 0 for i = u+l,...,s

- We can always assume that a(i) > 1, 1 = 1,... ,s.

Note also that

(38) ( O ,v ) a CT(.O’
1
)~ 

<—> for some > 0 , j = 1,.. .a(i)

we have

a(i) .

(0,v) = E A 1 y~~~i

j=l j

From (38) and the definition (19) ,

(39) rec (fr~) = cone { ~i~]
,• ,~~

i,a1~~) }
• From (9) , (21) , (36) ,  (37) we have

(40) CT(fr1
v. . .v =

cone

S (O ,vU~l),. . . ,(O,vL~ 5(~)), (l,wu,l),...(l,wu~~~~~)
S 

(0 u+l,l (0 
u+1~a( u+l)

)

- 1 Also, (30), (36) show

S (41) cp (~~~) = cony ~ i,l i ,b( i) ~

S i I i ,a(i)
- + cone [ v ‘ ,...,v I , i = l,...,u

S 

- while (30),(40), and ü > 1 show

_ _ _ _  .5 -55 - - S
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(42) cp(~~ 1v. . .v~V) =

• cony { w1’1 ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~

- 

÷ cone [ v1,l ~1,a (l) ~

+ cone [ ys , l

From (41) ,

• (43) clconv 
~ 

cp 
~~~~~ ) = cony [w

1’1,... ~~~~~~~~~~~
u,b( u) ,

w ,...,w 3

r 1,1 l ,a(1)
+ cone tv  , . . ., v

S 

± cone ~~
u,l 

~~~~~~~~

Then from (42), (43) and (39) we have (34).

Now , by (33) exactness (18) is equivalent to

(44) cp (~~~v...v4~) = clconv 
~ h=1 

cp (,V’))

S Hence from (34) exactness holds if and only if rec (fr.),i = u+l ,.. .s
S 

consists of directions of recession for clconv 

~h=1 
cp (P ’)) . But

. 

by (43) and Lemma 4, these directions constitute the cone
5 

1,1 1,a(1)
(45) cone C v ,...,v 3

+...

r u,l u,a(u)+ cone 1. v , . . . ,v

by (39) , hence the necessary and sufficient condition (35).

Q.E.D.
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The condition (35) for exactness is equivalent to the one obtained

in [ lS,Sec. 2.1.1] and [ l9,Theorem in Sec. 2.1.1], although in

[18],[l9] we did not give the inductive definition of rec (C-.) that

is supplied by Lemma 3, and is useful in Corollary 6 below toward our

- - main result Theorem 8. Recall in [18], (19] that we used polyhedral

definitions of CT(
~~
’
h
)
~ 

in the form

(46 ) CT(~~~)
1
~ 

= 
0,

x)~Q~x_q
h
x
0 ~“ o, x > o}. h = l,...,s

and gave, as a sufficient condition for exactness,

that

(47) j f Qhx > qh is inconsistent, then

> 0 implies x = x~~~~Q~
’x > qP consistent}

for certain x~~~ satisfying

Q~x > 0 .

By (46), we See

(48) cp(~~~ ) = l~xlQ
h
x qhi

h = l , . . . ,s
(49) rec (~~j )  = LxIQ

hX > -

From (48), (49) we see that (47) is identical with (35). In [18],

[19] the condition (47) is derived from a result of [5].

- 

S While here our interest in (34) and the exactness result (35)

that it supplies, is motivated by an instance of (35) (specifically,

Corollary 6(1) below that we need in Theorem 7), exactness (18) is of

interest in itself. More precisely, when each
~~~h 

is the matrix

inequality A1
~ ~ bh , it is not hard to show that exactness (18) holds

precisely if CT(
~~ l

v...vI6
~h
) contains cuts sufficient to define

S I
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clconv cp (9~)) = clconv ~x ‘ O~A
hx > bh]), i.e., if Bala s ’

h=l . h=1
disjunctive constraints construction E l 1 ,  [2  ] provides su f f ic ien t ly many

(and not just some) valid cuts for the logiaal oovi~ition that at least one

of the inequality systems A
h
x > bh , h = 1,... ,s holds. Since Bales ’

construction is so simple, it is of value to know when it has this

property.

Corollary 6: The following hypotheses imply exactness (18):

• 1) ree (
~Dj~

) is independent of h = 1,... ,s

2) cp ( ,91v...viG~) is a polytope

3) The sentences , h = 1,...,s, are identical, where is

obtained from by changing every right—hand-side ~~~ in every

atomic ictterG of  (I)  , to z~ro.

4) Eachjb~, h 1,... , 5 , has the form (Ahx bh) /~•
4?I~

S with

1: (50) (oI= [ x > o l A
h
x > o I , h = l ,...,s

Proof:

I) If cp (8 )  = 0 for h = l,.. ,s we have exactness by Theorem 2(3).

If cp (9#
h) ~ 0 for h = 1,...,s, exactness holds by Theorem 2(2).

Therefore we may assume (33), and then exactness holds since (35)

follows from the fact that



-
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• (51) rec ( ,~7~) 1- . .  . 4- rec (It- ) = r&~c (f ~~
) when

- S rec (2~. ) i s i i~dt~p ti~tk’n t oF I I ,. . . ,~~; .

2) If cp (/~- 1v . . .v = 0, from Theorem 2(2) we have cp(/’
1
) 0

for h = l,...,s, so exactness holds.

If cp (
~~~~~~

1
y~~~
.
~~~~y ;~~ 5 )  

~ 0 , (34) and the fact that it is a

polytope gives rec (/ ~~) = to) for h = u+l,.. ,s, from which (35)

is immediate.

3) It suffices to show that this hypothesis implies the hypothesis

of Corollary 6(l). However, this implication is immediate by

induction on the number of connectives in ~ 
•
h’ 

using Lemma 3(’~)

for the ground step and Lemma 3(1) and (2) for the i nductive step.

4) It s u f fj c c s  ro show , by C o r o l l a r y  6(1), that (~0) gives r-c ( 1-  = co~
fur h~ I ,. . . , I Iowc ver I rum ()0)  and I.4~I1flWI 1( 1)  we indeed ha v •

ret - [u~ 
—

Q.E. I) .

Corollary 6(2) was given earlier in [18], 119] and an instance

S of Corollary 6(3) occurs as [ l~~,Coro11ary 23].

Lemma 7: If either cp(C-L) ~ 0 or rec(€Z) [o), then CT(~Z)
• contains all the valid cuts for cp(~~~) ,  in  the sense tha t  ( 1) i s

• valid for cp(a..) if and only if (a
o,

_a i,...,_ar) a CT(Ct).

~r~of: First , suppose cp(~~) ~ ~4, and (1) is va l id .

_ _ _ _  -5- — -  - - -----5 ~~~~~~~~~~~~~~~ - -- - 5 -



_____  

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

19.

If (a ,—a 1,... ,_a
r

) ~ CT(~~) ,  since CT(CL) is a

polyhedral cone containing (-1,0,... ,0), there would be a separating

hyperplane (x
0,
x1,... ,xr

):

-x < 0

(52) j=l  
n 

: : 

if ~~~~~~~~~~~ ‘~~ r~ 
~ CT(~~~) ,

0 0  j~ 1

S If x
0 

> 0 in (52), we may assume x
0 

= 1 by multiplying all

inequalities in (52) by l/x
0. Then from (10),

x = (x1, . .  . ,x )  € cp(Q.) and from (52) we have a >~~~~ a
j
x
)~ 

a

contradiction to the validity of (1).

If x0 
= 0 , (52) becomes

• - r
5 

0 
~ j

L
j  

TT
J
X
1 

if 
~~~~~~~~~~~~~~~~~ 

CT( CL.)
(52)’ r

0 > ’  a x .
- j’=l ~

Since by hypothesis cp~i2.) ~ 0 , there exists on element of cp(~Z),

x° = (x°1, . . . ,x° ) .  (10),

(53) rT~x~ if (~~~,—ir1,. ‘~ r~ 
€ CT (0) .

.1=1

From the first inequality of (52)’ combined with (53) , for any p :~ 0

_ _ _ _ _  --5- - - 5 “- 5 -
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20.
r

(54) 
~~ 

< n (x 0 + px ) if ~~~~~~~~~~~~~ ‘~~ r~ 
€ CT(a)

j= l  -~ ~~

From (10), we see that x0 + px a ep (a,) for all p > 0.

However, from the second inequality of (82) ’ , for a suitably large 
S

p >O w e  have

(55 ) a
~~
> 

j~~l 
aj (x

j
° + PX j ) •

This contradicts the validity of (1), and thus proves the desired result.

Next, suppose rec(~L) = [ a) .  If cp(~Z) ~ 0, the previous

case app l i es .  Otherwise cp(&) 0, and we must prove that

CT(~~~ = R”~~ , since every inequality (1) is valid for cp(a).

From the def in i t ion  (19) of rec(a.) and from (30),

rec(a) = [0) and cp(a) = 0 imply CT(a)~ = [(0,0)3. But then

CT(~~ ) = [(O ,O))P = Rr+l , as desired.

- 

Q.E.D.

Section 2. The Main Result

In a manner analogous to the set definitions (4), (5), we def ine the

propositions 
~
2
h’ 

0 < h < t , by the inductive clauses:

= ( A x > b )
(56)

= 

t(h+1) 

(~~h 
A (Ah~

1hI
~x ~ b

h4].,P
)) , 0 < h < (t-l).

h+1 p=1

Here is our generalization of Theorem 1.

S.

IIIi•_jltIl•~•~ ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ 
5—- —~S~ ~~~~~~~~~~~~~
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Theorem p: If -L xlAx ~ b ’] is bounded and non-empty for some b’,

x ~ 0 occurs among the inequalities Ax ~~
- b of (2), and the system

• ( 2 ) ,  (3) is facial , then CT contains all the valid inequalities

for clconv [ x~ (2) and (3) hold 3

In fact , 5

/ Ax > b and , for each h = 1,... ,u , at least ’

- one of

(57) cp (
~~)=K 

= clconv x Ah~
l
x > b

h)bor. . .or A
h,t

~~~> bh,t(h)

holds.

for u = 0,1,... ,t.

Proof: First , we prove inductiva ly that

(58) rec (~Y )  [03 , u = 0 ,1,... , t

For u = 0 , ( 58) follows from the facts  that  [ xIAx ~ ‘ b ’ 3 is bounded and

non-empty, and a bounded non-empty polyhedron has only 0 as a direction

of recession. To go from u to (u+l) note in (56) for Ii = u that for

S 

p = l,...,t(u+l) we have by the inductive hypothesis

(59) rec (
~~u 

A (A~~
1’~x > b~~

1’~~) ) = {o)  ç~ rec (A
1’Px > b’ ’~)

- = [o)

from Lemma 3(1). Then again from (56) and Lemma 3(2) we obtain

rec (~~~~~~~j ) = [03, completing the induction.

By (58) and Corollary 6(1), the disjunction
~~~~+j 

is exact for

S 
O,...,t — 1.

Next, we assign to each proposition 
~~u’ 

u = 0,l,...,t its

disjunctive normal form s~Y [23] , 128], which in this context is
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22.
- 

- defined as follows. We putG
0 

=
~~~~~~~~ , arid if inductive1yó~ has

taken the form
n(u)

(60) = \/ G~1~
3=1

with 
~~~~ 

a conjunction of atomic sentences (1),

(initiall y n(0) = 1, 
~~~0,l 

6)~ = 6~ ) we set

n(u t(u+l)

(61) 
~~u+l 

‘

~~~1 ~ \/ (~Y~~ A ( A x  ~ b ) ) ,

where (61) also exhibits as the form (60), by re-indexing over pairs

S 

(j,p) with j  = 1,... ,n(u) and p = 1,...-t(u-i-l). One easily notes inductively,

that 6’ and 6’ are logically equivalent , i.e.,

(62) t~~~~(x) if and only if

where in ( t ,7 )  we explicitly note the dependence of the truth of~~ and

upon the vector x.

By induction upon the construction (60), (61) of it is easy

to see that Ax - b occurs as part of the conjunction of atomic sentences

which constitute for j =1,... ,n(u). Since [0) = [x IA x  > 03,

from Corollary 6(4) we see that~Y of (60) is exact. Also, the proposition

t(u+1)
- u+l,p u+l,p 

~
\

\j
/ ‘~~~u ,j  A (A x ~ b ) )  that occurs in of (61)

p=l

is exact for the same reason, as is any subformula of 6
~
’
u+1•



S 
~~~~~~~~~ S5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

23

We now show

I (63) cP(~~~)~ 
cp 

~~~~~~~~~~~~~ , ~~ 
=

by induction on u. For u = 0, the result follows from~P0 
i0

~
To go from u to (u+1), we have by exactness of LP+1 that

5

5 t(u+1) • u+1,p u+1,p
- 

5 

(64) cp(~~~~1
) =c1conv~~~U (ep (c? ) fl cp (A x > b )9

(((u-i-i) ‘ u+1,p u+1,p
(e.l) ~ clconv U ~cp ((P )fl cp (A x > b )

F (((u+l) - - n (u )  ‘ u+l ,p u+l ,p 
~\(~~~2) = clconv~~~U cp~( \/ ~P .) A (A x ~ b ))

f((u+l ) n (u )  ‘ u-i-1,p u+l ,p

S 

(L3) ~ c1conv~ 
p=l 

cp( ~~ ~~~~~~~~~~~~~ 

A (A x ? b ))))

S f~ (u+1) n(u)  / 
‘ u+1,p u+1,p -\

(1.4) = clconv( U U cp~~~ . - A  (A x > b ) ,))
- 

\ p = l j =]. ‘ /

(P .5) = cp ? ÷~ )

In (64), (2.1) follows from the inductive hypothesis (63); we get (~~2)

from Theorem 2(4) 4nd (60); (2.3) is a repeated application of Theorem

2(5); and both (L4) and (2.5) are consequences of the exactness that

was established in the preceeding paragraph.

S - S 
— ________________________- —- —-  - - — —  -5 - _ _ -5_ _~J -



_ _ _ _ _

24.

In what follows, we shall also need to know that

(65) cp(5
~~
) 
~ 
cp (e

~~_1
) 

~~ 
... 

~ cp~~~) ~ cp(~~) [xJ~ic > b)

The equality in (65) follows from Theorem 2(7) and the fact that the

inequalities x > 0 appear among Ax > b. The inclusions are proven by

induction on u = 0,l,...,t. To go from u to (u+i), first note that

5 
for p = l,...,t(u+l)

(66) cp~~~ A (Au+l,pX > b~~
1’~) ~ ~ 

cp (~~~)

from Theorem 2(4). Then from the exactness of the disjunction 
~u+l

and (66) plus the fact that cp (~P )  is a polyhedron, we have

t(u+l)
(67) cp(cP+1) 

= clconv 
(
\

P=1 
cp A (A~~~’~x ~ b~

F
~
I
~ P
))) ~ cp

thus completing the induction step. From (65) it follows that

cp (-? ) is a polytope, for u = 0,l,...t.

This completes the remarks tha t are introductory to the main

part of the proof. We now prove , by induction on u 0,l,...,t

that

I

-
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(68) cp (-~~~) = clconv xIQ (x) is true 
-

Ax ~~
- b and, for each h = 1,... u

at least one ofclconv x

Ah,lX > b
h,’ or ... or Ah

~ tth)x > bh~~~~
j

holds

Note that the second inequality En (68~ follows directly from the

definition (56) of the propositions(P . Hence we will prove

only the first equality in (68).

The first equality of (68) is immediate if u = 0, by Theorem 2(7)

and the fact that x > 0 occurs among the inequalities Ax> b of (2).

To go inductively from u to (u+l), note

(69) clconv xjO~~(x) is true = cp ((? ) ( L u)
j cp ( ? )  (e.2) S

clconv [xIG’ (x) is true) (g.3)

= clconv [xf c9 (x) is true) (€.4)

In (69), (€.l) follows from the inductive hypothesis; ((.2) is S

is justified by (63); (t.3) is a consequence of The irem 2(1); and

(t.4) follows from (62). Since the chain of equalities and inclusions 5’

in (69) begins and ends with the same set, we conclude that all inclusions

of (69) are equalities, and in particular that

(70) cp (6’) = cp (6’ )

for the current index u of the induction. Next, from (70) we have

I

5— -~~~ —— — -5— —  £—
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for any p = 1,...,t(u+l) that

(71) cp /t (A~~
1’~x > b

u+l
~P)) -

=cp(c? ) n cp (A 1
~
-
~
-l ’PX > b”~~~

I” (j.1) S

- 

=cp (~~~~) ~ ~~ (~~~~“~~X > b~~
1
’P) (~~2)

A (AU+~~~ > bu~~~P)) (~~3)

n(u) ‘ u+1,p u+l,p .~
=cp ((\J 

~~~~ 
A (A x 

~ 
b )) (&4)

~. .n(u) 
, u+l,p u+i,p(

~\J 
~~~~~ 

A (A x ?  b ) is true) (t5)
j=1

In (71), (~.l) follows from Theorem 2(4); (1.2) is justified by (70);
(& .3) is again a consequence of Theorem 2(4); and (t .4) is valid by the

definition (60). As to (L .5) of (71), this follows from Theorem 2(6);

in fact, A’~~~
1’x > bL~~~

p 
is a facial constraint relative to Ax > b,

(11(U) , ,
and CP~V ~~u,j) 

= cpQ ) is a polytope with
j =1

- 

(72) cp(O ) ~ cp(~~~) ~ cp(~~~) = C xlAx > b 3

From ( 7 2 ) , ,(A t1~~x ~~~~~~~ ~X I A u+l ,p x b~~”~’j

provides a face of cp(~~~’), as required in Theorem 
2(6).

Finally, by exactness of O’u+l in (56) for u = h, we have

LS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .± S~~~~~~~~~~ SS S~~~~~~~~~ S
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t(u +l)
(73) cp(

~~~+i
) clconv U cp(,~~~~ A (A~~

’’~
’x b~~~’~))H - 

p

S 

;~~t ( u-i-1) -

5 

- 
(e.1) = clconv U1 lxi 

~~u 
A (A

u+l
~Px > b

u+l ,P iS trueJ)

t(u+1), -

(t2) = clconv 
~~ xi \‘

/ 
~ ‘J’ A (A

u
~~

.
~I~X > b

L
~~~ Pj) is true ,

p 1

/

(f.3) = clconv -x l ó’+u
(x) is true;

In (73), (~ .l)is a consequence of (71); (9.2) is a valid way of interchanging

union and disjunction; and (,q 3) follows from the definition (56) with

u = h. We have now completed the induction step for (68) and see that (68)

is true.

To establish (57), we need to prove that

(74) cp(¼~~~) = K , u = 0,l,...,t

where K
u 

is as defined in (4), (5). The proof of (74) is by induction on

u, and the ground case u = 0 is immediate. To go from u to (u+l), using

the exactness of it we haveu+1

Q5) cp(~~~~1
) = clconv cp(L~~) ~ cp(A~~”~x > b

u+1
~P)~ (Zl)

= clconv

( 

u-l-1) 

(Ku fl 5LX IA
u+1 ,Px > b”+’~1’})) (1.2)

= K
~÷i 

. (L3)

_ _  ~~~~ - — —S~~~~~~~~-5~~~~~~~~~ - 5 - - -—  -5—
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In (75), (~~l) follows from Theorem 2(4); (L2) is valid by the

inductive hypothesis (74 ) and Theorem 2(7); and (L3) is direct

from the definition (5) for h = u. This completes our proof of (57).

By (53) for u = t and by (10), Lemma 7 shows that CT ((
~~
) contains

all the valid inequalities for -

~xi ~~~~~ 
is true] = clconv [xi (2) and (3) hold)

Q.E.D.

We next make several remarks, which are directed at showing how

Theorem 8 can be improved in various ways.

Remark 1: The restriction that x > 0 occur among Ax > b can be removed,

by a change in the definition of the co-proposition CT(E3~ for an

atomic sentence as in (1).

In place of (7), we can use

(7)’ CT ’(~~) = cone [(ao,
_a1,...ar

), 
~~~~~~~~~~

the single unit vector (-1,0,.. .0) being retained since one may

always decrease the r.h.s. a of a valid inequality (1), whether or

not the variables x are non-negative. Then the inductive clauses (8),

• (9) are retained as before, putting the prime on CT(~~ to write CT’(d~.

In place of (10), we write

/ for every (i-i ~~~~~~~~~~ ) cCT’(a.),o r

(10)’ cp’(a.) = x E ~ x > i~

j=l ~ ~ °
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With these changes, Theorem 2(2)-(6) are proven by precisel y

the same proofs, as we ind icated in [18] , [19] when we discussed (7)’.

Theorem 2(1) become s

- - 
I 

- (11) ’ cp(a-.) ~ clconv C xICL (x) is true 3
and Theorem 2(7) becomes

(17) ’ cp(~~) = C x~Ax > b 3
Lemma 3(1), (2) are proven exactly as above, while Lenmia 3(3)

becomes

(22) ’ rec(a..) = f x~Ax > 0 3
The proof of Lemma 4 need not be changed , and the same holds for the

proof of Theorem 5: both these results remain true. Corollary 6(l)-(3)

remains valid with the same proof , but in Corollary 6(4) we must change

(50) to

(50)’ [0) = -
, x~A~

’x -> 0 , h l,...s

Then the proof of Theorem 8 goes through almost unchanged, so the theorem S

holds even if x > 0 is not among the constraints of Ax > b.
- Remark 2: Theorem 8 is false if the hypothesis, that C xIAx > b’ 3 is

non-empty and bounded for some b’ , is dropped. In fact, one easily proves

that

CP~J) 
~ 

K , U = 0,1,..., t

without this hypothesis, and without facial constraints, by induction on

u. But even the result (6) need not be true.

- -

~

•--- - -  - -5 -  ~~~~~~ - S ~~~~-5 - -  ~~~~~~~~~~~~~~~~~~~~~~~~ - - . 5- — -  ~~~~~--~~~~~ - -5- -S
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Consider , for instance , the facial constraint system

(2)’ l > x
1 >0 , x2 >0

(3)’ at least one of

x
1
< O o r  (x1

= l , x2
=0)

holds, and

at least one ot

> 1

• holds.

From (4), (5) we have

K
1 

= clconv 
~ {x~x~ = c , x2 > o} tj {xIx 1 = l,x2 

= o} )
(76) = [ xI O < x i

< l ,x
2
> 0)

K
2
= [ x ~x1

= l ,x2
>0 )

S Therefore

(77) K2 ~ C (1,0) 3
= clconv C (1,0) 3 = clconv C x~ (2)’ and (3)’ hold 3 .

Here the failure of (6) is due to the non-trivial direction of

recession (0,1) for (2) ’ .

• - Nevertheless, by a device due to A. Charnes (see e.g. [7], [17]) - S

it is possible to obtain a result very similar to Theorem 8 without

hypotheses of boundedness or non-emptiness. The idea is as follows.

We shall always add , to the constraints of (2), (3) for real

t matrices ~~~~~~~~~~~~ the constraints

-
S ~~~~ I

--- - ---

~

S— —— - -5----

~
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(78) N ~ x1 ~~ N , j  = l,...,r

where N is an infinitely large quantity (or, if x > 0 occurs in

Ax > b, one may use the simple constraint Xl+•••+Xr < M ). We now
-

- ! have a system of constraints in R(M) ,, the simple transcendental

extension of R obtained by adjoining M, and ordered by placing on

N the infinite valuation ( for details of this field, see [17]).
In the field R(M), the co-propositions CT(~~) or CT’(~2-) are

defined as before. All previous results can be recovered, with proofs

virtually unchanged , except that at points in some proofs the term

“bounded” is to be replaced by “is a polytope.” In fact, these

results are valid in any ordered field, of which R(M) is one. In a

general ordered field, a “polytope” is the empty set or the convex span

of finitely many points; or, equivalently, an intersection of half

spaces which, if non-empty, has no non-trivial directions of recession.

In particular, Theorem 8 holds in R(M)r , with tie condition on that

there be no non-zero solution to Ax > 0 replacing the requirement of

boundedness and non-emptiness. But here Ax > b has rows corresponding

to the added constraints (78), hence there is no non-zero solution and

CT(
~~~
) in R(M) has all the valid cuts for (2), (3) augmented by (78).

S Next, note that the elements 
~~~~~~~~~~~~ 

cCT (
~
?
~
) in

which are purely real (i.e., is real for j =0 ,l,...,r), provide

all the valid cuts for clconv [ xj (2) and (3) hold 3 . Indeed, if

r
(79) if X_

j=l ~

- - - -5-
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is in CT(
~~~
)
~
it is valid for (2), (3),(78). Hence it is valid

for any x e Rr satisfying (2),(3) as x surely satisfies (78).

• For the converse, if (79) is valid for (2),(3) it must also be valid

for (2),(3),(78) and hence be in CT(
~
l’
~
). For if (79) is not valid

for (78) also, there exists x (M) e R(M)’~ which satisfies (2),(3),(7g)

and such that
r

(80) E ~ 4 x4(N) < ~r
j=l ~ 

0

But then for large integral k, x(k) ~ R
r 
satisfies (2) and (3) and

yet

r ~~l )  L
j=l 0

(see [17] for details), contradicting the validity of (79) for (2),(3).

In sixmiary, to obtain the conclusion of Theorem 8, i.e., that

all valid cuts are in CT(ó~ ) ,  one need only suitably adjoin an

infinite quartity in constraints (78) in the construction, and then use

only those cutting-planes in which the infinite quantity is absent.

Remark 3: As is evident from the proof of Theorem 8, one can weaken

the requirement that the system (2),(3) is facial, and instead require

that all of the matrix inequalities Ah+I ,I
~x > ~~~~~ for p =l,...t(h+1)

are facial to the polyhedron cp (6
~h
) = K.~, for Ii 

= 0,...,t-l.

- -5 - — - - -- - --5- - 5 - 5  --5-- - - - - S
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In order to rLlate Theorem 8 to previous results , we shall next

develop a succinct formulation of one of its consequences, in terms

of logical derivations in a certain system of formal deduction.

Chv~tal was the first to implicitly state results on cutting-planes

in this form [8], and Blair has since used it [4].

In what follows, we shall draw on concepts and terminology from

the fields of mathematical logic called proof theory ana mod~~1 theory.

No background in logic is presumed , but the interested reader may wish

to see a fuller development in 125], 126].

S To present a system of deduction that we shall use, and do so in

an informal manner , we proceed as follows.

We shall be studying certain finite tree structures that we shall

call derivations, or (equivalently) derivation-trees. To the nodes of

these trees shall correspond certain linear inequalities (1). Were we

• 

- 

to be entirely formal, the nodes would correspond to certain statements
- - in a formal language that express linear inequalities; but we shall

5 make no such distinction here. The tree shall be spread out at the 

- - -—- 5 - 5 - 5 - - -— -- --
~~ 

- 5 -  •
~~~~~~ 

5 5 - S - - -  5-



- -~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

‘4.

• “top,” and narrow to one node at the “bott om.”

Where a given node has several others connected to it by an

edge and just above it, we require that the inequality assigned

• to this node “follow from” the inequalities assigned to the nodes

just above, in the sense that it is the conclusion of one of the

rules of deduction of the logical system and the inequalities above

are the premisses of this rule.

For instance, one of our rules of deduction shall be

av+...+a v > a , b v + ...+b v > b11  n n —  o 11  n f l —  o
- (LC) 

-

(Aa 1+0b1)v1+. . .+ (Xa -~-Ob )v > c

- 
- 

and for the application of (LC) we require that X ,Q > 0 and that

c < Xa + Qb . The premisses of (LC) are a v +...-fa v > a ando—  o - o 1 1  n n —  o

also b1v1+...+b v > b ;  the conclusion of (LC) is

+ 9b~ ) v
1 +...+ (Xa~ + Q b )  v > c .  The parameters of

I • 
(LC) are 9, X and c0. The rule (LC) is understood (as is any rule)

as “saying” that, If its premisses have already been “deduced,” one
- 

is entitled to “deduce” its conclusion. For the generic variables - -

v
1
,... ~~ one may employ any of the variables 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When (LC) occurs in a tree , as part of i t , that part looks like

I

— --5-- -- - - -  -5 -—-5-5- -— S - —-- 5- - - - -~~~~~~~ 
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where the top two nodes correspond to the premisses, and the

bottom node corresponds to the conclusion. An instance of (LC),

with the corresponding inequalities underlined , and X = 9 = 1, is

2x1 -x2 > 7 

~

‘ 

2x
2

> 5  

3x2 > -2

which is often abbreviated

2x
1 ~~~ 

> ~ 5x
1 
4 3x

2 
> -2

_ /
7x1 + 2x

2 > 
5

The inequality assigned to the last node of a derivation tree

is called the endformula of the tree. The inequalities assigned to the

top nodes of the tree are called the assumptions, of the derivation. We

say that the derivation is a “proof of its endformula from its asstnnpt4 us.”

In various contexts, different inequalities are designated as

axioms; if the assumptions of a derivation are all axioms, we shall, say

that the derivation is a proof of its endformula. A proof may have only

one node, that corresponds to an axiom: it proves the axiom. With

all this terminology, one evident consequence is this: if there is a

proof of every asstunp,tion of a derivation, these may be appended above

~

- - - -  _ _
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the assumptions so as to constitute a proof of the endformula of the

derivation.

To give an extended illustration of a proof tree, we add a rule,

which is one instance of a type of rule we shall consider in results

to follow.

Consider the rule

SX
1 
+ ty1 > 0 S ’X

1 
+ t ’y1 ~

s’x1 + ty1 ? 0

The rule (CNP)’ is of course not true in general , but it is valid for

problems with a constraint x1~ y1 
= 0. Indeed, for such problems, if

x
1 

= 0 the conclusion becomes the premiss on the left, while if

y1 
= 0 the conclusion becomes the preiniss on the right.

All the rules, other than (LC), that we shall introduce below ,

will share the property that the conclusion becomes equivalent to one

of the premisses , provided that one of a finite number of alternatives

hold. Rules of this type were first suggested by Blair [4 ] for

bivalent programming, and we shall call them disjunctive rules.

For our example, we take as axioms 2Y~, + > 4, y
1 

+ z1 
> 3,

y
1 

+ 2 Z
1 
>4. Using rules (LC) and (cMP)’, we have the following

derivation tree ~~~

‘

, where we indicate the rule used at each node

I
other than a top node: S

— -~~~~ - -5 ~~~ - - S  ~~~~~~~~~~~
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S 2y 1 ± z 1> 4  y +z

1
> 3  y1 +z

1
> 3  y1 +2z

1~~~
4

N (LC) / (LC ) / 
S

L. 3y1 + 2 z
1~~~

7 2y
1
+3z

1 > 7
— 

(CMr) ’
2y1 + 2 z 1 > 7

This is a proof of 2y
1 + 2z1 ~ 7, since all assumption inequalities

are axioms.

A model for a given set of axioms and of rules of deduction , is a

specific non-empty structure whose elements are vectors , the components

o f which are designated by var iables x 1, x2 ,..., y 1,. . . ,  Z ]~~ ... etc .

in the axioms and rules of deduction , that satisfies the following

two conditions: 1) For every substitution of a vector in an axiom

(components being ~ubstiruted for the corresponding variable), a true 
S

numerical statement results; 2) For every substitution of a vector

S In the pretnisses of a rule of deduction (components being substituted

• for the corresponding variable) such that all the premisses become

true numerical statements , the same substitution in the conclusion

of the rule yields a true numerical statement. From this definition

of a model , an easy induction on the length of a derivation shows
S 

that the endformula of any darivation is true for all substitutions S

for which all assumption inequalities are true. In speci f ic , the



-
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38. 1.
- - 1 the endformula of a proof is true for all substitutions in any 1

model for the given axioms and rules of deduction. For a discussion

of models in a more general context, see [26].

Clearly, a model for (LC) is Rn, in which (v1.. . ,v) varies

over all n-tuples of real numbers. Any K’~, with K an ordered field , 
-

also provides a model with vectors in K’~, as the co-efficients - -
S

a1,...,a ,a ,b1,...,b ,b and the parameters A , 9, c vary over

- elements of K.

From the model R2, it is easy to see that 2y1 + 2z 1 > 7 cannot

be the endformula of any proof that uses rule (LC) alone. Indeed ,

5 the assumption inequalities °~ L hold f or (y1,z1) 
= (1,2) ,  while

S the endformula does not.

S A stronger endformula statement than that of occurs in this 1
shorter proof r from the same axioms:

2y1 +z1 > 4  y1 + 2 z
1 > 4

• I (Ci~~) ’  / /  
S 

—

÷ z1 > 4 - I

- 
A model for these axioms, plus the rules of deduction (LC) and (CM?)’,

is

- N = 
~ (y1,z1) € R 2

~ y1z 1 O ,2 y1 + > 4, y1 + z1 > 3, y 1 + 2z
1 

> 4 , 

S

5 
as one easily verifies. Since (O ,4)e M, we see that the endformula 5

of F cannot be improved, in the sense that there is no proof of
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y1 + > 4 + 6 for any 6 > 0, from these axioms and rules of

deduction.

We next discuss a specific model and provide disjunctive rules o~ 
S

deduction that are clearly valid for it; then we prove a surprising

property of these rules.

Consider the following, very general, complementarity constraints,

in which J1,...J~ are certain non-empty 
sets of subsets of (l,...,r),

H so that 
~, l)’ ” ” ~h(t(h)~J ’  

where each K.~(j) is a non-empty subset 55

- of [l,...,r1~ , an4 x =

S 
- A x > b

S I  - x > 0  
S

I t 
—

(cMP) 
~ ~fl (~

‘ X
k) 

= 0

f h=l K€J
h 

kelcn

A specific instance of (CMP) is 5

A y + Bz~~~b

(GLC) y,z~~~0 5

y .z O

• 

- 

in which r = 2s for an integer a > 1, y = (x1, . .. , x5) and
S 

z — (x9+ i , . . . , x28 ) ;  also , 3h = 

~ 
[j1, tj+s3 } for h = l,...,t. 

S

The problem (GLC) is itself a generalization of the linear

cousplementarity problem, since we do not require that

‘— ‘I

hit_ ~~~~~~~~~~~ S - — - 
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I M IA
L_M J (M a square matrix)

(82) 8

b

[-c i

as would be required for linear complemantarity constraints [101 ,[ll],[2l].

Due to the condition x ? 0 imposed on the variables in (cM?) ,

the nonlinear constraint is equivalent to the logical constraints

(3)” for Ii = l,...,t at least one of the conditions

( x~ = 0,keKh(l)
’

~ 
or ... or 

~ 
x.K 

= 0
~

kcKh(h~)~
’

holds ,

where h’ — t(h) in the nota.ion of (2),(3). Therefore, (CM?) is

S among the class of constraint sets (2),(3), and since x > 0 is included

S - in the constraints of (CM?), the logical conditions (3)” are all

facial in Balas ’ sense [ 2  ].

For convenience in stating our rule of deduction, we shall assume

that all have at least two elements. This is not a serious restriction,

for j~ = CIS~(1) ) then all variables x~, ke1c~(l,) may be removed

from those among x by setting them to zero, with the resulting constraint

systam equivalent to (CM?) (if all variables are thus removed , (CM?)

is consistent , if and only if 0 ~ b , in which case the unique solution

S i s x — O ) .  • 1

— - -5 -5 _ _
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Our rules of deduction for (CM?) are given in Figure 1,

where the stipulations on the scalar quantities which occur deserve

note. The rule 
~~~~~ 

is clearly valid in that model )?? consisting

of all xeR that satisfy the constrain ts (GMP), if ~~ 0

Indeed , suppose that it is the condition X
~K 

= 0, keK.fl(j) which is

satisfied by a point (X
l~~• • • ~~

X
r
) e)SL. Whenever a

11
x1 +...+ a

~~
xX > a~

is also satisfied, then so is a1x1 +...+ ~~~ > a , provided tI~.:

ak is aik 
if k$Icf l ( J ) .  while a.K can be arbitrary for kcIc~(~ ) since

= 0. The stipulation on scalar quantities in (cW
~
)h insures

this proviso.

As an example of an application of the rule 
~~~~~ 

we have,

with r = 4 and 3h {[l,23} , (1,3,43 , fl ,4)}:

x1+2x2+3x3-+4x4 
> 5,6x1I-7x2+8x3+9x4 ~ 5, lOx

1+7x
2
+3x

3
+llx

4> 5

12x
1+7x2+3x

3
+4x

4 ~ 5

In this example, we have made coefficients distinct whenever possible.

• E.g., x1 
has the new co-efficient ‘12’ in the conclusion, since the

index ‘1’ appears in I(~(l,) = [1,2), Kh(2) 
= [1,3,4), and Ic.fl(3) 

= [1,4),

indicating that there are no restrictions on a1 in ~~~~~ 
Similarly, 

S

since 3 
~ ~~(l) 

and 3 $ 
~~ (3) , while 3 c 

~~(2) 
, the co-efficient of

in the conclusion must match that in the leftmost and rightmost

pr~~isses, and these two coefficients must themselves agree (they are

all ‘3’).

-~~~~ - - - 5 - - --- -5S-- -~~~~ - -



_______ .5-5-

‘1
43.

S We shall say that a set of axioms and of rules of deduction

is complete for a model )~‘Lof these axioms and rules, if every

linear inequality holding for all vectors))2~ has a proof via these

rules from these axioms.

In this terminology, a basic principle on linear inequalities

[27], [29] has tI~e foLLowing staletnent: if

( xeR lAx > b ) is non-empty, then the axioms Ax > b and rule

of deduction (LC) are complete for.?1i’. As is well-known, from this

principle one immediately obtains both the Farkas Leusna and the

S 
Duality Theorem of li~near programming (see e.g., [27]). The result

S 
of Chv~tal is a completeness theorem for (LC) plus a second rule

specified in f8 3 (i.e., integer truncation) , for models of the form

7)2 = [x IAx > b ,x integer) with axioms Ax > b , such that CxlAx > b)

is bounded. The result of Blair [ 4 , Chapter 3] is a completeness

theorem for two rules of deduction , concerning models of the form

~~~~ Cx~Ax > b, x. 
= 0 or 1, j = l,...,r), and we will explicitly

present Blair ’s result in this form in Corollary 11.

A notational abbreviation we shall use, is that ~84) below

abbreviates a series of applications of (LC) as follows:

- H  ~ 1 ~ 2

\ /
F
’

(83) “ p 2
• s—i

‘ps-i

-

J S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



where 
~~~~~~~~~

, 

~~~~~~~~~~~~~~~~~~~ ~ 

are derivations and P1, P2,...,P are

statements of linear inequalities.

Also, a statement P is said to be valid in a model1~~if P becomes
’

a true numerical statement for every substitution of a vector of ~~~~~~~~

for the variables of P (components being substituted for the

corresponding variable).

Theorem 9: The axioms Ax > b , x > 0 together with rules of deduction

5 ! , (LC) and 
~~~~~~ 

h = l,...,t are complete for the model?’Z~’of (CM?)

consisting of all real vectors (xl , . .. , x )  satisfying (CM?), provided

that Cx > OlAx > b) is bounded and non-empty.
S 

In fact with this proviso, there are finitely many derivations

~ l’”’’~s 
with assumption formula from Ax > b x > 0, such that any

linear inequality statement P that is valid in)~~has a deduction of the

S 

• form

(84 ) •. .  L

p

in which the last rule of deduction is (LC).

Furthermore , in going from any topmost node of q =

downward by arcs of the tree to its bottoemost node, one encounters,
S in the following specified order, these rules of deduction: one

application of (LC) , followed by one application each of (cW
~
)1,...,(CMC)

~~
,

~

‘-. 5-

~

-

~

-- -- S ~~~~~~ S
55 - -
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- j - between each of which is one or more applications of (LC). -

Also , if is a subcierivation of ,q = 1,...,s obtained S

- - by selecting a node from the tree 
q and detaching the subtree of

S 

nodes and arcs above and including this node, and if the last

inference in is an application of the rule (CMC)h, then the

endformula of provides a facet or singular inequality of

S Moreover, any facet or singular irLequality of K.~ arises as the

endformula of exactly one such subderivation ~~ of the derivation

(84) with last inference (CNC)
h.

If m~= 0 , but tx > OjAx > b’} is bounded and non-empty for

some b’, then from the axioms and rules of deduction cited , any

S inequality can be proven.

Proof: The proof is by induction on t.

S 
For ~ a 1, only the rule (LC) is to be used. Then the derivations

S 

~~~~~~~~~

,..•, ~~~are each single formulae , designating some inequality

S among Ax > b , x > 0 which is a tc~’et or singular inequality for the
S 

set C x > olAx > b) . The derivations ...,~~~enumera te all such

facets and singular inequalities. By the hypothesis that this latter

set is non-empty, there is der ivation (80) for any valid consequence P,

according to the fundamental results on linear inequalities [271,[29].

The induction step from t to (t+l) is as follows.

Let Q be a valid inequality (1) for rn . Then by Leusna 7,

(85) (a, _ai,...,
~
ar) a CT(Q

~+1).

‘ - -

~
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Using (8) , (9) , and (56), we have in the notation (3)”,

S i  h(t+l) 
~ 1 t+l —

5j  (86) CT(
~
P
~+,
) = fl ~CT~~.11) + CT (A ‘~x b ‘ ) ,

h( t+ l) .

=n (cT(
~~~
) + CT(~~ 0, k€~~(~)))

S 
p l

Putting h’ = h(t+1), (85) and (86) imply

(87) (a
~~

=ai,...,
~
a
r
) € CT(~~~ ) + :::~ =

From (87) , for each p = 1,... ,h’ there exists a vector

(apo~
_a
pj~

...
~
=a
pr
) e CT(ó~ ) and unrestricted scalars Ok,

kcKh(P)

S such that
ak 

= a
Pk ,if 4Kh(p)

(88)
ak 

= akJ + 0k’ k€K.fl ()

Since 0 ~ ~~~~~ we see that a = a is independent of p. Then by

(88), Figure 1 is a deduction of the valid inequality Q of (1) from

the valid inequalities

(89) a
j
x . a , p =

H
obtained from vectors (a ,—a 1,. .. ,— a )  € CT(

~?~
).

Assumem’ ,~ 0

.- .

- —--—— - --

~

-

~
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~
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By the inductive hypothesis, any valid inequality for has

a proof of the type described in the theorem. Let derivations

‘~w 
of this type be given for every facet and every singular

inequality of K
t
. Since (89) is valid for K

~
, there is a derivation

of Q of the form

A1.. (LC) .... ‘~l~ ~~w (LC )

(90) ~h ’ (CMC)
~+i

Q

S I  where Q
~ 
denotes the p-th inequality of (89).

Let derivations~~~ ~~~be obtained as derivations (90),

varying Q over all the finitely many facets and singular inequalities

of cp(cP
~÷i

) ,  which by Theorem 8 is the set of all elements of ~~
Then clearly there is a derivation (84) for any valid inequality

P of ~~Z’of the desired form , as a valid inequality is obtained by a

non-negative combination of facets and singular inequalities in the

a manner (LC) [27], [29].

In the eventAZ = 0 , by induction there are proofs
S 

A i of 
~~ 

i = i,...,h ’ , and we obtain a proof

A 1

(90)’  Q

of Q. This completes the induction for = 0.

Q.E.D.
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The proof of Theorem 9 has been constructive. For instance,

S 

if the inequalities A*x > b*, x > 0 for cp (
~~~
) have been obtained,

then the cutting-planes for cp(Q
~

) are those of

(91) CT ((A~ c > b*) A (~~ = 0 ,

which are obtain directly by the disjunctive constraints construction.

From [2], [16], [19] we have ( rr ‘ 1T1’~~• ’ TTr ) in the co-proposition

of (91) if and only if there are vectors ~~~~~~~ 
Q~ with

(92) ?1YA* + Q
~
Zh ( )  ~

- 
)Yb* ?~‘~~ 

p =

where 
~ ~~

l’’”’
~r~ 

and Zh ( )  is a square matrix of zeroes, except

S for diagonal entries of unity in the (k,k) - position for kcLc~(~).

Since is unconstrained, the first inequalities in (92) simplify

- in that the occurence of OPZh ( )  can be deleted if the extire constraint

- 
on the k-th component is also deleted for keK.fl(~).

- The system (92) describes a cone of cutting-planes whose extreme

r ~ rays or lineality vectors , projected on the (rr ,r T)  - coordinates, yield

facets or singular inequalities, etc. Extreme rays can be converted to

extreme points by various normalizations , and extreme points may be

S 
obtained via Phase I of the Simplex Method ; similar remarks apply to —
singula r inequalites.

ii 
— 5 -- - ——---- -—-~ -~ S - S~~~S 
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We may apply Theorem 9 to the special case (GLC) discussed

I )  
- 

above. We note tha t the rule (cMC)~ is (ii)., and (LC) is (i), in the I
next result. If we then disgard the information of Theorem 9 concerning

the special structure of the proof of P, we obtain the following

corollary , which was announced in [20].
S Corollary 10: If

~(x ,y )IAx  + Bz > d~ x > 0, z > 0~-

is bounded and non-empty for some d’ , then any valid cutting-plane for

for the complementarity constraints

(CLC) Ax + Bz > d , x > 0, z > 0, x..z = 0,

is obtained by starting from the linear defining inequalities

(91) A x + B z > d , x > 0 , z > 0

and applying, finitely often the following two rules (the second for

j = 1,... ,r):

(i) Take non-negative combinations of given inequalities,
S 

and possibly weaken the right-hand-side. 
5

(iL)~ Having already obtained two inequalities

+ ... +UX
j 

+ • • • + ~~
Y
r

X
r + 5 1

z
1 

+ .. . + tZ ~ + • •~~+~~~~
Z
r ~~ X O

+ •. .  +U ’X
j
+ ~~~~~ ~rXr ÷ 8 1z1 +...+t’z~ +~~~•+ ~~~

Z
r ~~~ ~o 

S

~ I one may deduce

+ + •~~
•+
~~r

X
x +~~~.1Z

1 
+ . . . + t ’ Z~ +

~~~~
+

~~~r
Z
r ~~~~~

S Conversely, any inequality thus obtained 18 valid for the

complementarity constraints.

- S~~~~~~~~ S_~~~~~~~~~~~~~~~~~~~~~~~~
_
~~~~~~ . - - -
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We next derive a completeness result of Blair [ 4] from Corollary
10, in a manner that shows that rule (ii). and (CMC)

h 
are generalizations

of Bla ir ’s rule (BR)~ . 
S

Corollary 11: Any valid cutting-plane for the constraints

(IP) Ax ~~
- d

x . = 0 or 1, j = 1,... ,r

is obtained by starting from the linear inequalities

(92) Ax > d

x . > 0 , j S= 
~~~~~~ .. ,r S

> —1 , j = 1,... ,r

and applying, fi nite ly often, the following two rules (the second

for j  = l,...,r):

(i) Take non-negative combinations of given inequalities , S

and possibly weaken the right-hand-side.

(BR)
~ 

Having already obtained two inequalities S

O x  + . . .+ ux +...+ O x  ~~P1 1  j r r —

O x  +...+ w x .+...-4- O x > TS 
- 

1 1  r r —

one may deduce

O x  +... + ( w + P - T ) x . +...~- Q x  s~~~~~~

11

Converse ly, any inequali ty thus obtained is valid for (IP).

Proof: The validity o~ (BR)~ is ininedia .-e, ‘~ince the conclusion is

equivalent to the first hypothes i .-~ i f  ~A . = 0 and the second hypothesis

if x~ = 1. It  remains only L I )  Rho’I t h a t  the rules are adequate to

obtain any given valid inequality.

- - __________________ 
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______
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Now if (1) is valid for (IP) , it is also valid for the following S

equivalent of (IP) :

Ax ~~ d

X
j +Z j = l  ,

5~~~55 5
, (IP) ’ x

1
, Z

j  

> 0 , j  =

-~~ j~ l~~ 

Z
j 
= 0

Since (IP)’ is of the form (CLC), Corollary 10 app lies , and there

is a proof of (1) using only rules (i),(ii) ..

This proof involves the additional variables We now show

how to rystematically convert it to a proof of the logical system I.C’~~

of this corollary , in only variables x, ~sing the rules (i) and (BR) ..

The validity of our conversion procedure is proven by induction on
- 

- 
the number A of rules of deduction occurring in the proof of (1)

in the logical systemaC of Corollary 10. Our inductive hypothesis

is that, if the inequality

(93) ai
x
i
+...+ r

x
r+9jZ4~~~

4
~ r

’z
r ~ 

a
0

is provable in the logical sys tems with < A occurences of rules o

deducti’- n, then in the logical system of this corollary the

convert~id inequal ity 
r 

S

(94) (a
l
_a

l
’)x

l+... 5s
~
(a;_a

r
’)x

r ~ a0 
— 

~~~~~

is provable .

For ~ = 0, the proof is trivial. If the inequality (1) is among

the axioms Ax ~ d, it is also an axiom in (92). If (I) is

- — 

~~~~~~~~~~~~~ 
~~~~~~~~ ~SS.5I~5~s~~ 5_ —SS- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~_ s s  S S I ~~~~~~~~ SS~_ _~~5 - ~_ SS_ — -  - S
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X
j 
+ ~

- 1, we must provide a proof of (1-1) i - 1, or 

52.

0~ X~ > 0; but (LC) yields 0 x~ 
‘— 0 by using zero as parameters. If

(1) is _X
j 

- z. - I, again we obtain a formal proof of 0 x . > 0.
S - If (1) is > 0, then this inequality is also an axiom (92). Finally, 

S

if (1) is z. 0, then (0_l)x~ > 0 - 1 or _X
j  ~ 

- 1 is also an axiom of

(92).

The inductive step from ~ to (~ + 1) is as follows.

If the last rule used in the proof is (LC), titieri applying

- (LC), with the same parameters, to the conversions (94) of the

hypotheses (93) of the rule, will yield the conversion of the conclusion

of the rule; we leave details to the reader.

If the last rule used in the proof is (ii)., let the hypotheses

of this rule be as in (u) 1 of CorollarylO. These hypotheses have

proofs using ~~ . A applications of rules, and hence by induction there are

I 
proofs in the logical system of this corollary of th’ two conversions

of these hypotheses, i.e., of

(95) (ei~~1)x
1
+...+(u_ t)x

j
+...+(c

~r~~r
)x

r ~ ~o 
- - t 

S

k~jand

~~l l l +~~~~~~
’_t ’ j . ~~r~~r ~~~~ ~k 

-

k~tj
With the inequalities of (95) as hypotheses ,

- 

~~~ 

- t ’ , N - 

~k - 
~~~ = - for j ~ k,

kpt l

by one application of (BR)~ we obtain the conclusion

- S  — —~~~----- -~~~-~~~~-- --- __



(96) (c~ - e 1) x 1+...+ (U_ t ’ ) X
j

+• • •+ ( cY
r 

— 
~~r

)
~

C
r ~ ~~~~~~ ~k 

-

i-I k~j

~ 

Note that (96) is the conversion of the conclusion of rule (ii)~ .

Therefore , by adding on top of these hypotheses (95) of (BR)~ their

- proofs in the logical system of this corollary, we obtain a proof

of the conversion of the endformula. This completes our induction.

-
- If an inequality (93) is entirely in the variables

xl,...,xr (i.e., 
if a

1
’ = ... = a

r
’ = 0), then its conversion (94) is

itself. This completes the proof.

Q.E.D.

L

Carnegie-Mellon University
S 

- 
June 8, 1976
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S
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- -We describe~ two simple rules of cutting-plane generation for the
coinplementarity constraints -

~~~~~~
- .

4 5,- - S

Ax ~ b - ‘— ~~
---——---------.~~~~_

x~~~O 
-

~~~~

(C? 
h~ 1 K ~~~ (k~K~~~~~~- °  ____ ___ continued on re se side

DO 4Ou .~ J~73 . .j5T~O 4 
~~- • II U’  IS .I 

~~~~~ 
N ~- - . - . . . -  ‘.~~~ fln~1assified.~.__.. _ -
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1nnd we show that the se ri.Ie~’ generate all (and onl y) the valid cutting—p lanes •
tor (CML’), if there is souse b’ ~or which C x 0 Ax — b’ u s  non-empty and -

bounded . S - ~ I !
In (cMP), x ( x

1
,... ,x ) ,  and J is a set of subsets K of C 1,... ,r 3. The -r ~~~~~ ~-J -,J-

problem (CMP) includes the linear comp lementarity problem and bivalent integer

programming, along with many other constraint sets which impose logical

restrictions on linear inequa1ities.~~~,~~
.-
~~
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